Math 564: Real analysis and measure theory <u>Lecture</u>

Non measurable sols.

We will give an example of a non-lebesgue-measucable subset of IR.

Det. Let E be an equivalence relation on a set X. A transversal for E is a set Y= X which meets each E-class in exactly one point. A selector for E is a map $s: X \to X$ such that $s(x) \in [x]_E$ and $x \in g \rightleftharpoons s(x) = s(g)$ for all $x, y \in X$. For a selector s, we can get a transversal Y:=s(X), and vive versa, from a transversal Y, we get a selector $h_{S}(x):= h_{E}(x)$ unique $g \in Y \cap [x]_E$.

Selectors and transversals exist by Axiom of Choice, but this typically results in ill-behaved functions and sets, for example, nonmeasurable.

Example let Ea be hu so-called Vitali equivalence relation on P debred by x Eay <=> y-x EQ.

This is simply the coset equivalence colation of Q as a subgroup of IR codes addition.

Also, this is the orbit equivalence colation of the action of Q on R by teacsletion.

For each $x \in \mathbb{R}$, the class $[x]_{Eq} = x + Q$, in particular, it intersects [0,1].

Claim. Any transversal Y = [0,1] of Equ is non measurable wit lebesque measure).

If Y was nockscable, so would by its translater geY and $\lambda(\gamma \in Y) = \lambda(Y)$. So: $1 = \lambda((0,1)) \leq \lambda((1 + Y)) = \sum_{Y} \lambda((1 + Y)) = \infty \cdot \lambda(Y) \leq \lambda((1 + 2)) = 3$, a contraction.

Kemark. It is tempting to Mink that nonmeasurable sets can only arise from Axiom of Choice. This has some touth to it but not entirely. Indeed, in Solovays model of ZF (Zermelo-Fraenkel set theory without Choice) where Axious of Choice fails badly, all subsets of IR are liberque measurable. On the other hand, there are simple constructions of subsets of IR without Choice, did yield non-measurable sets in some other models of ZF. More concretely, there is a Cor (athl intersection of open sets) subset B of IRS, such that whether or not the set proj (IR' \ proj R2 (B)) is independent of ZFC!!! This is to say that measurability is a subtle property, and even the measurability of projections of Benel sets (called analytic sets) is a difficult theorem.

Pocket tools for working with measures,

Peop (monotone convergence). Let (X, B, μ) be a measure space.

(a) $\mu(V Au) = \lim_{n \to \infty} \mu(Au)$ for all μ -measurable Au with $Au \in Au+1$.

(6) μ (MAn) = tim μ (An) for all y-meas. Bu with Bn=Busi and μ (Bo) < 0.

Consider. If all Bu have intrife energice, part (b) may not hold: take $B_a := (u, \infty)$, then $A_a := A_a$ $A_a := A_a$.

Proof. (a) We disjointify: $A_a := A_a A_{a-1}$, so $A_a := A_a A_a = A_a A_a$.

If all Bu have intrife energice, part (b) may not hold: take $B_a := (u, \infty)$, then $A_a := A_a A_a = A_a A_a A_a = A_$

= lin Z \ \(\lambda \lambda \\ \text{N > \omega \ n < N \\ \text{N > \omega \ N > \omega \ N > \omega \ \text{N > \omega \ N > \omega \ \text{N > \omega \ N > \omega \ N > \omega \ \text{N > \omega \ \text{N > \omega \ \text{N > \omega \ N > \omega \ \text{N >

The sets An:= B. Bu are increasing, so by (a), we have $\mu(W A a) = \lim_{n \to \infty} \mu(An) = \lim_{n \to \infty} (\mu(Bo) - \mu(Bu)) = \mu(Bo) - \lim_{n \to \infty} \mu(Bu),$ where we use that $\mu(Bn) \leq \mu(Bo) \leq \infty$ in the second equality. On the other hand:

, μ(((((((((((((((((((
$\mu(\mathcal{D} A_n) = \mu(\mathcal{B}_0 \setminus \mathcal{A}_n) = \mu(\mathcal{B}_0) - \mu(\mathcal{B}_0), \text{ so } \mu(\mathcal{B}_n) = \lim_{n \to \infty} \mu(\mathcal{B}_n).$
Borel-Cantelli lemmas (Important Pizeochole Principles). Let (K,B, p) be a me (sure space. Let (An) be a sequence of p-measurable sets.
(a) If $\sum_{n \in \mathbb{N}} \mu(A_n) < \infty$, then $a.e. \times EX$ is eventually not in Au , i.e. the set $\limsup_{n \to \infty} A_n := \{x \in X : \exists_{n \to \infty}^{\infty} \times EA_n\} = \{1\} \cup A_n \}$
(1 Junull.
Measure compadhess). Suppose p(X) < \infty = \frac{1}{2} \frac{1}{
Proof. (a) Note that limsup $A_{c} \subseteq \bigcup_{n \ge m} A_{n}$ for all $m \in \mathbb{N}$, so $\mu\left(\lim_{n \ge m} A_{n}\right) \le \mu\left(\bigcup_{n \ge m} A_{n}\right) \le \sum_{n \ge m} \mu(A_{n}) \longrightarrow 0 \text{ as } m \to \infty.$
Nam nam
(6) Since $\mu(x) \in \Omega$, μ (bincup An)= $\mu \left(\bigcap_{n \in \mathbb{Z}} \mathcal{A}_{n} \right) = \lim_{n \to \infty} \mu \left(\bigcup_{n \in \mathbb{Z}} \mathcal{A}_{n} \right) \geq J$.
application. led (X, B, p) be a measure space. A sequence (Va) of p-meas, subs is called vanishing (resp. almost vacility) (f (Va) is decreasing and D) Va is empty (resp. unli).
copy let F be a collection of primeas sets that is closed under cfb1 unions. If I contains positive measure only of arbitracity small measure, then I contains
an almost variously sequence of positive meas sol with $\mu(An) \leq 2^{-4n}$. The sols An may not be dureasing, but the sets $V_n := V$ Am are decreasing and and $V_n = linsup$ An is null by Borel-Cantelli because $\sum_{n \in \mathbb{N}} \mu(A_n) < \infty$.